Bayesian Variable Selection for Globally Sparse Probabilistic PCA

19 May 2016  ·  Charles Bouveyron, Pierre Latouche, Pierre-Alexandre Mattei ·

Sparse versions of principal component analysis (PCA) have imposed themselves as simple, yet powerful ways of selecting relevant features of high-dimensional data in an unsupervised manner. However, when several sparse principal components are computed, the interpretation of the selected variables is difficult since each axis has its own sparsity pattern and has to be interpreted separately. To overcome this drawback, we propose a Bayesian procedure called globally sparse probabilistic PCA (GSPPCA) that allows to obtain several sparse components with the same sparsity pattern. This allows the practitioner to identify the original variables which are relevant to describe the data. To this end, using Roweis' probabilistic interpretation of PCA and a Gaussian prior on the loading matrix, we provide the first exact computation of the marginal likelihood of a Bayesian PCA model. To avoid the drawbacks of discrete model selection, a simple relaxation of this framework is presented. It allows to find a path of models using a variational expectation-maximization algorithm. The exact marginal likelihood is then maximized over this path. This approach is illustrated on real and synthetic data sets. In particular, using unlabeled microarray data, GSPPCA infers much more relevant gene subsets than traditional sparse PCA algorithms.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods