Beating Stochastic and Adversarial Semi-bandits Optimally and Simultaneously

25 Jan 2019  ·  Julian Zimmert, Haipeng Luo, Chen-Yu Wei ·

We develop the first general semi-bandit algorithm that simultaneously achieves $\mathcal{O}(\log T)$ regret for stochastic environments and $\mathcal{O}(\sqrt{T})$ regret for adversarial environments without knowledge of the regime or the number of rounds $T$. The leading problem-dependent constants of our bounds are not only optimal in some worst-case sense studied previously, but also optimal for two concrete instances of semi-bandit problems. Our algorithm and analysis extend the recent work of (Zimmert & Seldin, 2019) for the special case of multi-armed bandit, but importantly requires a novel hybrid regularizer designed specifically for semi-bandit. Experimental results on synthetic data show that our algorithm indeed performs well uniformly over different environments. We finally provide a preliminary extension of our results to the full bandit feedback.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here