Belief Propagation Min-Sum Algorithm for Generalized Min-Cost Network Flow

20 Oct 2017  ·  Andrii Riazanov, Yury Maximov, Michael Chertkov ·

Belief Propagation algorithms are instruments used broadly to solve graphical model optimization and statistical inference problems. In the general case of a loopy Graphical Model, Belief Propagation is a heuristic which is quite successful in practice, even though its empirical success, typically, lacks theoretical guarantees. This paper extends the short list of special cases where correctness and/or convergence of a Belief Propagation algorithm is proven. We generalize formulation of Min-Sum Network Flow problem by relaxing the flow conservation (balance) constraints and then proving that the Belief Propagation algorithm converges to the exact result.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here