Benchmarking Generated Poses: How Rational is Structure-based Drug Design with Generative Models?

Deep generative models for structure-based drug design (SBDD), where molecule generation is conditioned on a 3D protein pocket, have received considerable interest in recent years. These methods offer the promise of higher-quality molecule generation by explicitly modelling the 3D interaction between a potential drug and a protein receptor. However, previous work has primarily focused on the quality of the generated molecules themselves, with limited evaluation of the 3D molecule \emph{poses} that these methods produce, with most work simply discarding the generated pose and only reporting a "corrected" pose after redocking with traditional methods. Little is known about whether generated molecules satisfy known physical constraints for binding and the extent to which redocking alters the generated interactions. We introduce PoseCheck, an extensive analysis of multiple state-of-the-art methods and find that generated molecules have significantly more physical violations and fewer key interactions compared to baselines, calling into question the implicit assumption that providing rich 3D structure information improves molecule complementarity. We make recommendations for future research tackling identified failure modes and hope our benchmark can serve as a springboard for future SBDD generative modelling work to have a real-world impact.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here