Benefit of Interpolation in Nearest Neighbor Algorithms

23 Feb 2022  ·  Yue Xing, Qifan Song, Guang Cheng ·

In some studies \citep[e.g.,][]{zhang2016understanding} of deep learning, it is observed that over-parametrized deep neural networks achieve a small testing error even when the training error is almost zero. Despite numerous works towards understanding this so-called "double descent" phenomenon \citep[e.g.,][]{belkin2018reconciling,belkin2019two}, in this paper, we turn into another way to enforce zero training error (without over-parametrization) through a data interpolation mechanism. Specifically, we consider a class of interpolated weighting schemes in the nearest neighbors (NN) algorithms. By carefully characterizing the multiplicative constant in the statistical risk, we reveal a U-shaped performance curve for the level of data interpolation in both classification and regression setups. This sharpens the existing result \citep{belkin2018does} that zero training error does not necessarily jeopardize predictive performances and claims a counter-intuitive result that a mild degree of data interpolation actually {\em strictly} improve the prediction performance and statistical stability over those of the (un-interpolated) $k$-NN algorithm. In the end, the universality of our results, such as change of distance measure and corrupted testing data, will also be discussed.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here