Best-of-Both-Worlds Linear Contextual Bandits

27 Dec 2023  ·  Masahiro Kato, Shinji Ito ·

This study investigates the problem of $K$-armed linear contextual bandits, an instance of the multi-armed bandit problem, under an adversarial corruption. At each round, a decision-maker observes an independent and identically distributed context and then selects an arm based on the context and past observations. After selecting an arm, the decision-maker incurs a loss corresponding to the selected arm. The decision-maker aims to minimize the cumulative loss over the trial. The goal of this study is to develop a strategy that is effective in both stochastic and adversarial environments, with theoretical guarantees. We first formulate the problem by introducing a novel setting of bandits with adversarial corruption, referred to as the contextual adversarial regime with a self-bounding constraint. We assume linear models for the relationship between the loss and the context. Then, we propose a strategy that extends the RealLinExp3 by Neu & Olkhovskaya (2020) and the Follow-The-Regularized-Leader (FTRL). The regret of our proposed algorithm is shown to be upper-bounded by $O\left(\min\left\{\frac{(\log(T))^3}{\Delta_{*}} + \sqrt{\frac{C(\log(T))^3}{\Delta_{*}}},\ \ \sqrt{T}(\log(T))^2\right\}\right)$, where $T \in\mathbb{N}$ is the number of rounds, $\Delta_{*} > 0$ is the constant minimum gap between the best and suboptimal arms for any context, and $C\in[0, T] $ is an adversarial corruption parameter. This regret upper bound implies $O\left(\frac{(\log(T))^3}{\Delta_{*}}\right)$ in a stochastic environment and by $O\left( \sqrt{T}(\log(T))^2\right)$ in an adversarial environment. We refer to our strategy as the Best-of-Both-Worlds (BoBW) RealFTRL, due to its theoretical guarantees in both stochastic and adversarial regimes.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here