Better scalability under potentially heavy-tailed gradients

1 Jun 2020  ·  Matthew J. Holland ·

We study a scalable alternative to robust gradient descent (RGD) techniques that can be used when the gradients can be heavy-tailed, though this will be unknown to the learner. The core technique is simple: instead of trying to robustly aggregate gradients at each step, which is costly and leads to sub-optimal dimension dependence in risk bounds, we choose a candidate which does not diverge too far from the majority of cheap stochastic sub-processes run for a single pass over partitioned data. In addition to formal guarantees, we also provide empirical analysis of robustness to perturbations to experimental conditions, under both sub-Gaussian and heavy-tailed data. The result is a procedure that is simple to implement, trivial to parallelize, which keeps the formal strength of RGD methods but scales much better to large learning problems.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here