Better than Real: Complex-valued Neural Nets for MRI Fingerprinting

1 Jul 2017  ·  Patrick Virtue, Stella X. Yu, Michael Lustig ·

The task of MRI fingerprinting is to identify tissue parameters from complex-valued MRI signals. The prevalent approach is dictionary based, where a test MRI signal is compared to stored MRI signals with known tissue parameters and the most similar signals and tissue parameters retrieved. Such an approach does not scale with the number of parameters and is rather slow when the tissue parameter space is large. Our first novel contribution is to use deep learning as an efficient nonlinear inverse mapping approach. We generate synthetic (tissue, MRI) data from an MRI simulator, and use them to train a deep net to map the MRI signal to the tissue parameters directly. Our second novel contribution is to develop a complex-valued neural network with new cardioid activation functions. Our results demonstrate that complex-valued neural nets could be much more accurate than real-valued neural nets at complex-valued MRI fingerprinting.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here