Paper

Beyond Isolation: Multi-Agent Synergy for Improving Knowledge Graph Construction

This paper introduces CooperKGC, a novel framework challenging the conventional solitary approach of large language models (LLMs) in knowledge graph construction (KGC). CooperKGC establishes a collaborative processing network, assembling a team capable of concurrently addressing entity, relation, and event extraction tasks. Experimentation demonstrates that fostering collaboration within CooperKGC enhances knowledge selection, correction, and aggregation capabilities across multiple rounds of interactions.

Results in Papers With Code
(↓ scroll down to see all results)