Bilevel Entropy based Mechanism Design for Balancing Meta in Video Games

We address a mechanism design problem where the goal of the designer is to maximize the entropy of a player’s mixed strategy at a Nash equilibrium. This objective is of special relevance to video games where game designers wish to diversify the players’ interaction with the game. To solve this design problem, we propose a bi-level alternating optimization technique that (1) approximates the mixed strategy Nash equilibrium using a Nash Monte-Carlo reinforcement learning approach and (2) applies a gradient-free optimization technique (Covariance-Matrix Adaptation Evolutionary Strategy) to maximize the entropy of the mixed strategy obtained in level (1). The experimental results show that our approach achieves comparable results to the state-of-the-art approach on three benchmark domains “Rock-Paper-Scissors-Fire-Water”, “Workshop Warfare” and “Pokemon Video Game Championship”. Next, we show that, unlike previous state-of-the-art approaches, the computational complexity of our proposed approach scales significantly better in larger combinatorial strategy spaces.

PDF

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here