Bilingual Low-Resource Neural Machine Translation with Round-Tripping: The Case of Persian-Spanish
The quality of Neural Machine Translation (NMT), as a data-driven approach, massively depends on quantity, quality, and relevance of the training dataset. Such approaches have achieved promising results for bilingually high-resource scenarios but are inadequate for low-resource conditions. This paper describes a round-trip training approach to bilingual low-resource NMT that takes advantage of monolingual datasets to address training data scarcity, thus augmenting translation quality. We conduct detailed experiments on Persian-Spanish as a bilingually low-resource scenario. Experimental results demonstrate that this competitive approach outperforms the baselines.
PDF Abstract