Bio-inspired Real Time Sensory Map Realignment in a Robotic Barn Owl

NeurIPS 2008  ·  Juan Huo, Zhijun Yang, Alan F. Murray ·

The visual and auditory map alignment in the Superior Colliculus (SC) of barn owl is important for its accurate localization for prey behavior. Prism learning or Blindness may interfere this alignment and cause loss of the capability of accurate prey. However, juvenile barn owl could recover its sensory map alignment by shifting its auditory map. The adaptation of this map alignment is believed based on activity dependent axon developing in Inferior Colliculus (IC). A model is built to explore this mechanism. In this model, axon growing process is instructed by an inhibitory network in SC while the strength of the inhibition adjusted by Spike Timing Dependent Plasticity (STDP). We test and analyze this mechanism by application of the neural structures involved in spatial localization in a robotic system.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here