Black-box stability analysis of hybrid systems with sample-based multiple Lyapunov functions

2 May 2022  ·  Adrien Banse, Zheming Wang, Raphaël M. Jungers ·

We present a framework based on multiple Lyapunov functions to find probabilistic data-driven guarantees on the stability of unknown constrained switching linear systems (CSLS), which are switching linear systems whose switching signal is constrained by an automaton. The stability of a CSLS is characterized by its constrained joint spectral radius (CJSR). Inspired by the scenario approach and previous work on unconstrained switching systems, we characterize the number of observations needed to find sufficient conditions on the (in-)stability of a CSLS using the notion of CJSR. More precisely, our contribution is the following: we derive a probabilistic upper bound on the CJSR of an unknown CSLS from a finite number of observations. We also derive a deterministic lower bound on the CJSR. From this we obtain a probabilistic method to characterize the stability of an unknown CSLS.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here