Blind Image Deconvolution by Automatic Gradient Activation

Blind image deconvolution is an ill-posed inverse problem which is often addressed through the application of appropriate prior. Although some priors are informative in general, many images do not strictly conform to this, leading to degraded performance in the kernel estimation. More critically, real images may be contaminated by nonuniform noise such as saturation and outliers.Methods for removing specific image areas based on some priors have been proposed, but they operate either manually or by defining fixed criteria. We show here that a subset of the image gradients are adequate to estimate the blur kernel robustly, no matter the gradient image is sparse or not. We thus introduce a gradient activation method to automatically select a subset of gradients of the latent image in a cutting-plane-based optimization scheme for kernel estimation. No extra assumption is used in our model, which greatly improves the accuracy and flexibility. More importantly, the proposed method affords great convenience for handling noise and outliers. Experiments on both synthetic data and real-world images demonstrate the effectiveness and robustness of the proposed method in comparison with the state-of-the-art methods.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here