Blockchain-Enabled Variational Information Bottleneck for IoT Networks

10 Mar 2024  ·  Qiong Wu, Le Kuai, Pingyi Fan, Qiang Fan, Junhui Zhao, Jiangzhou Wang ·

In Internet of Things (IoT) networks, the amount of data sensed by user devices may be huge, resulting in the serious network congestion. To solve this problem, intelligent data compression is critical. The variational information bottleneck (VIB) approach, combined with machine learning, can be employed to train the encoder and decoder, so that the required transmission data size can be reduced significantly. However, VIB suffers from the computing burden and network insecurity. In this paper, we propose a blockchain-enabled VIB (BVIB) approach to relieve the computing burden while guaranteeing network security. Extensive simulations conducted by Python and C++ demonstrate that BVIB outperforms VIB by 36%, 22% and 57% in terms of time and CPU cycles cost, mutual information, and accuracy under attack, respectively.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here