Boost-R: Gradient Boosted Trees for Recurrence Data

3 Jul 2021  ·  Xiao Liu, Rong pan ·

Recurrence data arise from multi-disciplinary domains spanning reliability, cyber security, healthcare, online retailing, etc. This paper investigates an additive-tree-based approach, known as Boost-R (Boosting for Recurrence Data), for recurrent event data with both static and dynamic features. Boost-R constructs an ensemble of gradient boosted additive trees to estimate the cumulative intensity function of the recurrent event process, where a new tree is added to the ensemble by minimizing the regularized L2 distance between the observed and predicted cumulative intensity. Unlike conventional regression trees, a time-dependent function is constructed by Boost-R on each tree leaf. The sum of these functions, from multiple trees, yields the ensemble estimator of the cumulative intensity. The divide-and-conquer nature of tree-based methods is appealing when hidden sub-populations exist within a heterogeneous population. The non-parametric nature of regression trees helps to avoid parametric assumptions on the complex interactions between event processes and features. Critical insights and advantages of Boost-R are investigated through comprehensive numerical examples. Datasets and computer code of Boost-R are made available on GitHub. To our best knowledge, Boost-R is the first gradient boosted additive-tree-based approach for modeling large-scale recurrent event data with both static and dynamic feature information.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here