Bootstrapping incremental dialogue systems: using linguistic knowledge to learn from minimal data

We present a method for inducing new dialogue systems from very small amounts of unannotated dialogue data, showing how word-level exploration using Reinforcement Learning (RL), combined with an incremental and semantic grammar - Dynamic Syntax (DS) - allows systems to discover, generate, and understand many new dialogue variants. The method avoids the use of expensive and time-consuming dialogue act annotations, and supports more natural (incremental) dialogues than turn-based systems... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet