Bounded Adversarial Attack on Deep Content Features

CVPR 2022  ·  QiuLing Xu, Guanhong Tao, Xiangyu Zhang ·

We propose a novel adversarial attack targeting content features in some deep layer, that is, individual neurons in the layer. A naive method that enforces a fixed value/percentage bound for neuron activation values can hardly work and generates very noisy samples. The reason is that the level of perceptual variation entailed by a fixed value bound is non-uniform across neurons and even for the same neuron. We hence propose a novel distribution quantile bound for activation values and a polynomial barrier loss function. Given a benign input, a fixed quantile bound is translated to many value bounds, one for each neuron, based on the distributions of the neuron's activations and the current activation value on the given input. These individualized bounds enable fine-grained regulation, allowing content feature mutations with bounded perceptional variations. Our evaluation on ImageNet and five different model architectures demonstrates that our attack is effective. Compared to seven other latest adversarial attacks in both the pixel space and the feature space, our attack can achieve the state-of-the-art trade-off between attack success rate and imperceptibility.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here