BrainSegNet : A Segmentation Network for Human Brain Fiber Tractography Data into Anatomically Meaningful Clusters

The segregation of brain fiber tractography data into distinct and anatomically meaningful clusters can help to comprehend the complex brain structure and early investigation and management of various neural disorders. We propose a novel stacked bidirectional long short-term memory(LSTM) based segmentation network, (BrainSegNet) for human brain fiber tractography data classification... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet