Breaking the Linear Iteration Cost Barrier for Some Well-known Conditional Gradient Methods Using MaxIP Data-structures

Conditional gradient methods (CGM) are widely used in modern machine learning. CGM's overall running time usually consists of two parts: the number of iterations and the cost of each iteration. Most efforts focus on reducing the number of iterations as a means to reduce the overall running time. In this work, we focus on improving the per iteration cost of CGM. The bottleneck step in most CGM is maximum inner product search (MaxIP), which requires a linear scan over the parameters. In practice, approximate MaxIP data-structures are found to be helpful heuristics. However, theoretically, nothing is known about the combination of approximate MaxIP data-structures and CGM. In this work, we answer this question positively by providing a formal framework to combine the locality sensitive hashing type approximate MaxIP data-structures with CGM algorithms. As a result, we show the first algorithm, where the cost per iteration is sublinear in the number of parameters, for many fundamental optimization algorithms, e.g., Frank-Wolfe, Herding algorithm, and policy gradient.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here