Bregman Divergence for Stochastic Variance Reduction: Saddle-Point and Adversarial Prediction

NeurIPS 2017 Zhan ShiXinhua ZhangYaoliang Yu

Adversarial machines, where a learner competes against an adversary, have regained much recent interest in machine learning. They are naturally in the form of saddle-point optimization, often with separable structure but sometimes also with unmanageably large dimension... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet