Bridging the Gap Between Adversarial Robustness and Optimization Bias

We demonstrate that the choice of optimizer, neural network architecture, and regularizer significantly affect the adversarial robustness of linear neural networks, providing guarantees without the need for adversarial training. To this end, we revisit a known result linking maximally robust classifiers and minimum norm solutions, and combine it with recent results on the implicit bias of optimizers. First, we show that, under certain conditions, it is possible to achieve both perfect standard accuracy and a certain degree of robustness, simply by training an overparametrized model using the implicit bias of the optimization. In that regime, there is a direct relationship between the type of the optimizer and the attack to which the model is robust. To the best of our knowledge, this work is the first to study the impact of optimization methods such as sign gradient descent and proximal methods on adversarial robustness. Second, we characterize the robustness of linear convolutional models, showing that they resist attacks subject to a constraint on the Fourier-$\ell_\infty$ norm. To illustrate these findings we design a novel Fourier-$\ell_\infty$ attack that finds adversarial examples with controllable frequencies. We evaluate Fourier-$\ell_\infty$ robustness of adversarially-trained deep CIFAR-10 models from the standard RobustBench benchmark and visualize adversarial perturbations.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here