"Bring Your Own Greedy"+Max: Near-Optimal $1/2$-Approximations for Submodular Knapsack

12 Oct 2019  ·  Dmitrii Avdiukhin, Grigory Yaroslavtsev, Samson Zhou ·

The problem of selecting a small-size representative summary of a large dataset is a cornerstone of machine learning, optimization and data science. Motivated by applications to recommendation systems and other scenarios with query-limited access to vast amounts of data, we propose a new rigorous algorithmic framework for a standard formulation of this problem as a submodular maximization subject to a linear (knapsack) constraint. Our framework is based on augmenting all partial Greedy solutions with the best additional item. It can be instantiated with negligible overhead in any model of computation, which allows the classic \greedy algorithm and its variants to be implemented. We give such instantiations in the offline (Greedy+Max), multi-pass streaming (Sieve+Max) and distributed (Distributed+Max) settings. Our algorithms give ($1/2-\epsilon$)-approximation with most other key parameters of interest being near-optimal. Our analysis is based on a new set of first-order linear differential inequalities and their robust approximate versions. Experiments on typical datasets (movie recommendations, influence maximization) confirm scalability and high quality of solutions obtained via our framework. Instance-specific approximations are typically in the 0.6-0.7 range and frequently beat even the $(1-1/e) \approx 0.63$ worst-case barrier for polynomial-time algorithms.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here