Broad Twitter Corpus: A Diverse Named Entity Recognition Resource

COLING 2016 Leon DerczynskiKalina BontchevaIan Roberts

One of the main obstacles, hampering method development and comparative evaluation of named entity recognition in social media, is the lack of a sizeable, diverse, high quality annotated corpus, analogous to the CoNLL{'}2003 news dataset. For instance, the biggest Ritter tweet corpus is only 45,000 tokens {--} a mere 15{\%} the size of CoNLL{'}2003... (read more)

PDF Abstract COLING 2016 PDF COLING 2016 Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet