Building a Knowledge Graph from Natural Language Definitions for Interpretable Text Entailment Recognition

Natural language definitions of terms can serve as a rich source of knowledge, but structuring them into a comprehensible semantic model is essential to enable them to be used in semantic interpretation tasks. We propose a method and provide a set of tools for automatically building a graph world knowledge base from natural language definitions. Adopting a conceptual model composed of a set of semantic roles for dictionary definitions, we trained a classifier for automatically labeling definitions, preparing the data to be later converted to a graph representation. WordNetGraph, a knowledge graph built out of noun and verb WordNet definitions according to this methodology, was successfully used in an interpretable text entailment recognition approach which uses paths in this graph to provide clear justifications for entailment decisions.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here