Building and Exploiting a Corpus of Dialog Interactions between French Speaking Virtual and Human Agents

We describe the acquisition of a dialog corpus for French based on multi-task human-machine interactions in a serious game setting. We present a tool for data collection that is configurable for multiple games; describe the data collected using this tool and the annotation schema used to annotate it; and report on the results obtained when training a classifier on the annotated data to associate each player turn with a dialog move usable by a rule based dialog manager. The collected data consists of approximately 1250 dialogs, 10454 utterances and 168509 words and will be made freely available to academic and nonprofit research.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here