Bumpless Topology Transition

18 Sep 2022  ·  Tong Han, Yue Song, David J. Hill ·

The topology transition problem of transmission networks is becoming increasingly crucial with topological flexibility more widely leveraged to promote high renewable penetration. This paper proposes a novel methodology to address this problem. Aiming at achieving a bumpless topology transition regarding both static and dynamic performance, this methodology utilizes various eligible control resources in transmission networks to cooperate with the optimization of line-switching sequence. Mathematically, a composite formulation is developed to efficiently yield bumpless transition schemes with AC feasibility and stability both ensured. With linearization of all non-convexities involved and tractable bumpiness metrics, a convex mixed-integer program firstly optimizes the line-switching sequence and partial control resources. Then, two nonlinear programs recover AC feasibility, and optimize the remaining control resources by minimizing the $\mathcal{H}_2$-norm of associated linearized systems, respectively. The final transition scheme is selected by accurate evaluation including stability verification using time-domain simulations. Finally, numerical studies demonstrate the effectiveness and superiority of the proposed methodology to achieve bumpless topology transition.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here