Calibrate and Debias Layer-wise Sampling for Graph Convolutional Networks

1 Jun 2022  ·  Yifan Chen, Tianning Xu, Dilek Hakkani-Tur, Di Jin, Yun Yang, Ruoqing Zhu ·

Multiple sampling-based methods have been developed for approximating and accelerating node embedding aggregation in graph convolutional networks (GCNs) training. Among them, a layer-wise approach recursively performs importance sampling to select neighbors jointly for existing nodes in each layer. This paper revisits the approach from a matrix approximation perspective, and identifies two issues in the existing layer-wise sampling methods: suboptimal sampling probabilities and estimation biases induced by sampling without replacement. To address these issues, we accordingly propose two remedies: a new principle for constructing sampling probabilities and an efficient debiasing algorithm. The improvements are demonstrated by extensive analyses of estimation variance and experiments on common benchmarks. Code and algorithm implementations are publicly available at https://github.com/ychen-stat-ml/GCN-layer-wise-sampling .

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here