Calibrating Long-form Generations from Large Language Models

9 Feb 2024  ·  Yukun Huang, Yixin Liu, Raghuveer Thirukovalluru, Arman Cohan, Bhuwan Dhingra ·

To enhance Large Language Models' (LLMs) reliability, calibration is essential -- the model's assessed confidence scores should align with the actual likelihood of its responses being correct. However, current confidence elicitation methods and calibration metrics typically rely on a binary true/false assessment of response correctness. This approach does not apply to long-form generation, where an answer can be partially correct. Addressing this gap, we introduce a unified calibration framework, in which both the correctness of the LLMs' responses and their associated confidence levels are treated as distributions across a range of scores. Within this framework, we develop three metrics to precisely evaluate LLM calibration and further propose two confidence elicitation methods based on self-consistency and self-evaluation. Our experiments, which include long-form QA and summarization tasks, demonstrate that larger models don't necessarily guarantee better calibration, that calibration performance is found to be metric-dependent, and that self-consistency methods excel in factoid datasets. We also find that calibration can be enhanced through techniques such as fine-tuning, integrating relevant source documents, scaling the temperature, and combining self-consistency with self-evaluation. Lastly, we showcase a practical application of our system: selecting and cascading open-source models and ChatGPT to optimize correctness given a limited API budget. This research not only challenges existing notions of LLM calibration but also offers practical methodologies for improving trustworthiness in long-form generation.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods