Can Continual Learning Improve Long-Tailed Recognition? Toward a Unified Framework

23 Jun 2023  ·  Mahdiyar Molahasani, Michael Greenspan, Ali Etemad ·

The Long-Tailed Recognition (LTR) problem emerges in the context of learning from highly imbalanced datasets, in which the number of samples among different classes is heavily skewed. LTR methods aim to accurately learn a dataset comprising both a larger Head set and a smaller Tail set. We propose a theorem where under the assumption of strong convexity of the loss function, the weights of a learner trained on the full dataset are within an upper bound of the weights of the same learner trained strictly on the Head. Next, we assert that by treating the learning of the Head and Tail as two separate and sequential steps, Continual Learning (CL) methods can effectively update the weights of the learner to learn the Tail without forgetting the Head. First, we validate our theoretical findings with various experiments on the toy MNIST-LT dataset. We then evaluate the efficacy of several CL strategies on multiple imbalanced variations of two standard LTR benchmarks (CIFAR100-LT and CIFAR10-LT), and show that standard CL methods achieve strong performance gains in comparison to baselines and approach solutions that have been tailor-made for LTR. We also assess the applicability of CL techniques on real-world data by exploring CL on the naturally imbalanced Caltech256 dataset and demonstrate its superiority over state-of-the-art classifiers. Our work not only unifies LTR and CL but also paves the way for leveraging advances in CL methods to tackle the LTR challenge more effectively.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here