Can You Trust This Prediction? Auditing Pointwise Reliability After Learning

2 Jan 2019  ·  Peter Schulam, Suchi Saria ·

To use machine learning in high stakes applications (e.g. medicine), we need tools for building confidence in the system and evaluating whether it is reliable. Methods to improve model reliability often require new learning algorithms (e.g. using Bayesian inference to obtain uncertainty estimates). An alternative is to audit a model after it is trained. In this paper, we describe resampling uncertainty estimation (RUE), an algorithm to audit the pointwise reliability of predictions. Intuitively, RUE estimates the amount that a prediction would change if the model had been fit on different training data. The algorithm uses the gradient and Hessian of the model's loss function to create an ensemble of predictions. Experimentally, we show that RUE more effectively detects inaccurate predictions than existing tools for auditing reliability subsequent to training. We also show that RUE can create predictive distributions that are competitive with state-of-the-art methods like Monte Carlo dropout, probabilistic backpropagation, and deep ensembles, but does not depend on specific algorithms at train-time like these methods do.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here