CARE: Extracting Experimental Findings From Clinical Literature

16 Nov 2023  ·  Aakanksha Naik, Bailey Kuehl, Erin Bransom, Doug Downey, Tom Hope ·

Extracting fine-grained experimental findings from literature can provide dramatic utility for scientific applications. Prior work has developed annotation schemas and datasets for limited aspects of this problem, failing to capture the real-world complexity and nuance required. Focusing on biomedicine, this work presents CARE -- a new IE dataset for the task of extracting clinical findings. We develop a new annotation schema capturing fine-grained findings as n-ary relations between entities and attributes, which unifies phenomena challenging for current IE systems such as discontinuous entity spans, nested relations, variable arity n-ary relations and numeric results in a single schema. We collect extensive annotations for 700 abstracts from two sources: clinical trials and case reports. We also demonstrate the generalizability of our schema to the computer science and materials science domains. We benchmark state-of-the-art IE systems on CARE, showing that even models such as GPT4 struggle. We release our resources to advance research on extracting and aggregating literature findings.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here