Category Disentangled Context: Turning Category-irrelevant Features Into Treasures

1 Jan 2021  ·  Keke Tang, Guodong Wei, Jie Zhu, Yuexin Ma, Runnan Chen, Zhaoquan Gu, Wenping Wang ·

Deep neural networks have achieved great success in computer vision, thanks to their ability in extracting category-relevant semantic features. On the contrary, irrelevant features (e.g., background and confusing parts) are usually considered to be harmful. In this paper, we bring a new perspective on the potential benefits brought by irrelevant features: they could act as references to help identify relevant ones. Therefore, (1) we formulate a novel Category Disentangled Context (CDC) and develop an adversarial deep network to encode it; (2) we investigate utilizing the CDC to improve image classification with the attention mechanism as a bridge. Extensive comparisons on four benchmarks with various backbone networks demonstrate that the CDC could bring remarkable improvements consistently, validating the usefulness of irrelevant features.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here