Causal Discovery Toolbox: Uncover causal relationships in Python

6 Mar 2019  ·  Diviyan Kalainathan, Olivier Goudet ·

This paper presents a new open source Python framework for causal discovery from observational data and domain background knowledge, aimed at causal graph and causal mechanism modeling. The 'cdt' package implements the end-to-end approach, recovering the direct dependencies (the skeleton of the causal graph) and the causal relationships between variables. It includes algorithms from the 'Bnlearn' and 'Pcalg' packages, together with algorithms for pairwise causal discovery such as ANM. 'cdt' is available under the MIT License at

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here