Causality and Bayesian network PDEs for multiscale representations of porous media

6 Jan 2019  ·  Kimoon Um, Eric Joseph Hall, Markos A. Katsoulakis, Daniel M. Tartakovsky ·

Microscopic (pore-scale) properties of porous media affect and often determine their macroscopic (continuum- or Darcy-scale) counterparts. Understanding the relationship between processes on these two scales is essential to both the derivation of macroscopic models of, e.g., transport phenomena in natural porous media, and the design of novel materials, e.g., for energy storage. Most microscopic properties exhibit complex statistical correlations and geometric constraints, which presents challenges for the estimation of macroscopic quantities of interest (QoIs), e.g., in the context of global sensitivity analysis (GSA) of macroscopic QoIs with respect to microscopic material properties. We present a systematic way of building correlations into stochastic multiscale models through Bayesian networks. This allows us to construct the joint probability density function (PDF) of model parameters through causal relationships that emulate engineering processes, e.g., the design of hierarchical nanoporous materials. Such PDFs also serve as input for the forward propagation of parametric uncertainty; our findings indicate that the inclusion of causal relationships impacts predictions of macroscopic QoIs. To assess the impact of correlations and causal relationships between microscopic parameters on macroscopic material properties, we use a moment-independent GSA based on the differential mutual information. Our GSA accounts for the correlated inputs and complex non-Gaussian QoIs. The global sensitivity indices are used to rank the effect of uncertainty in microscopic parameters on macroscopic QoIs, to quantify the impact of causality on the multiscale model's predictions, and to provide physical interpretations of these results for hierarchical nanoporous materials.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here