Certified Robustness of Quantum Classifiers against Adversarial Examples through Quantum Noise

Recently, quantum classifiers have been known to be vulnerable to adversarial attacks, where quantum classifiers are fooled by imperceptible noises to have misclassification. In this paper, we propose one first theoretical study that utilizing the added quantum random rotation noise can improve the robustness of quantum classifiers against adversarial attacks. We connect the definition of differential privacy and demonstrate the quantum classifier trained with the natural presence of additive noise is differentially private. Lastly, we derive a certified robustness bound to enable quantum classifiers to defend against adversarial examples supported by experimental results.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here