CFA: Class-wise Calibrated Fair Adversarial Training

CVPR 2023  ·  Zeming Wei, Yifei Wang, Yiwen Guo, Yisen Wang ·

Adversarial training has been widely acknowledged as the most effective method to improve the adversarial robustness against adversarial examples for Deep Neural Networks (DNNs). So far, most existing works focus on enhancing the overall model robustness, treating each class equally in both the training and testing phases. Although revealing the disparity in robustness among classes, few works try to make adversarial training fair at the class level without sacrificing overall robustness. In this paper, we are the first to theoretically and empirically investigate the preference of different classes for adversarial configurations, including perturbation margin, regularization, and weight averaging. Motivated by this, we further propose a \textbf{C}lass-wise calibrated \textbf{F}air \textbf{A}dversarial training framework, named CFA, which customizes specific training configurations for each class automatically. Experiments on benchmark datasets demonstrate that our proposed CFA can improve both overall robustness and fairness notably over other state-of-the-art methods. Code is available at \url{https://github.com/PKU-ML/CFA}.

PDF Abstract CVPR 2023 PDF CVPR 2023 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here