Channel Estimation in RIS-Enabled mmWave Wireless Systems: A Variational Inference Approach

25 Aug 2023  ·  Firas Fredj, Amal Feriani, Amine Mezghani, Ekram Hossain ·

Channel estimation in reconfigurable intelligent surfaces (RIS)-aided systems is crucial for optimal configuration of the RIS and various downstream tasks such as user localization. In RIS-aided systems, channel estimation involves estimating two channels for the user-RIS (UE-RIS) and RIS-base station (RIS-BS) links. In the literature, two approaches are proposed: (i) cascaded channel estimation where the two channels are collapsed into a single one and estimated using training signals at the BS, and (ii) separate channel estimation that estimates each channel separately either in a passive or semi-passive RIS setting. In this work, we study the separate channel estimation problem in a fully passive RIS-aided millimeter-wave (mmWave) single-user single-input multiple-output (SIMO) communication system. First, we adopt a variational-inference (VI) approach to jointly estimate the UE-RIS and RIS-BS instantaneous channel state information (I-CSI). In particular, auxiliary posterior distributions of the I-CSI are learned through the maximization of the evidence lower bound. However, estimating the I-CSI for both links in every coherence block results in a high signaling overhead to control the RIS in scenarios with highly mobile users. Thus, we extend our first approach to estimate the slow-varying statistical CSI of the UE-RIS link overcoming the highly variant I-CSI. Precisely, our second method estimates the I-CSI of RIS-BS channel and the UE-RIS channel covariance matrix (CCM) directly from the uplink training signals in a fully passive RIS-aided system. The simulation results demonstrate that using maximum a posteriori channel estimation using the auxiliary posteriors can provide a capacity that approaches the capacity with perfect CSI.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods