Channel Measurements and Modeling for Dynamic Vehicular ISAC Scenarios at 28 GHz

1 Mar 2024  ·  Zhengyu Zhang, Ruisi He, Bo Ai, Mi Yang, Xuejian Zhang, Ziyi Qi, Yuan Yuan ·

Integrated sensing and communication (ISAC) is a promising technology for 6G, with the goal of providing end-to-end information processing and inherent perception capabilities for future communication systems. Within ISAC emerging application scenarios, vehicular ISAC technologies have the potential to enhance traffic efficiency and safety through integration of communication and synchronized perception abilities. To establish a foundational theoretical support for vehicular ISAC system design and standardization, it is necessary to conduct channel measurements, and modeling to obtain a deep understanding of the radio propagation. In this paper, a dynamic statistical channel model is proposed for vehicular ISAC scenarios, incorporating Sensing Multipath Components (S-MPCs) and Clutter Multipath Components (C-MPCs), which are identified by the proposed tracking algorithm. Based on actual vehicular ISAC channel measurements at 28 GHz, time-varying sensing characteristics in front, left, and right directions are investigated. To model the dynamic evolution process of channel, number of new S-MPCs, lifetimes, initial power and delay positions, dynamic variations within their lifetimes, clustering, power decay, and fading of C-MPCs are statistically characterized. Finally, the paper provides implementation of dynamic vehicular ISAC model and validates it by comparing key simulation statistics between measurements and simulations.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here