Character and Subword-Based Word Representation for Neural Language Modeling Prediction

WS 2017 Matthieu LabeauAlex Allauzenre

Most of neural language models use different kinds of embeddings for word prediction. While word embeddings can be associated to each word in the vocabulary or derived from characters as well as factored morphological decomposition, these word representations are mainly used to parametrize the input, i.e. the context of prediction... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet