Characterizing and Utilizing the Interplay between Quantum Technologies and Non-Terrestrial Networks

15 Nov 2022  ·  Hayder Al-Hraishawi, Junaid ur Rehman, Mohsen Razavi, Symeon Chatzinotas ·

Quantum technologies are increasingly recognized as groundbreaking advancements set to redefine the landscape of computing, communications, and sensing by leveraging quantum phenomena, like entanglement and teleportation. Quantum technologies offer an interesting set of advantages such as unconditional security, large communications capacity, unparalleled computational speed, and ultra-precise sensing capabilities. However, their global deployment faces challenges related to communication ranges and geographical boundaries. Non-terrestrial networks (NTNs) have emerged as a potential remedy for these challenges through providing free-space quantum links to circumvent the exponential losses inherent in fiber optics. This paper delves into the dynamic interplay between quantum technologies and NTNs to unveil their synergistic potential. Specifically, we investigate their integration challenges and the potential solutions to foster a symbiotic convergence of quantum and NTN functionalities while identifying avenues for enhanced interoperability. This paper not only offers useful insights into the mutual advantages but also presents future research directions, aiming to inspire additional studies and advance this interdisciplinary collaboration.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here