Chinese Embedding via Stroke and Glyph Information: A Dual-channel View

3 Jun 2019  ·  Hanqing Tao, Shiwei Tong, Tong Xu, Qi Liu, Enhong Chen ·

Recent studies have consistently given positive hints that morphology is helpful in enriching word embeddings. In this paper, we argue that Chinese word embeddings can be substantially enriched by the morphological information hidden in characters which is reflected not only in strokes order sequentially, but also in character glyphs spatially. Then, we propose a novel Dual-channel Word Embedding (DWE) model to realize the joint learning of sequential and spatial information of characters. Through the evaluation on both word similarity and word analogy tasks, our model shows its rationality and superiority in modelling the morphology of Chinese.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here