Classification-Reconstruction Learning for Open-Set Recognition

Open-set classification is a problem of handling `unknown' classes that are not contained in the training dataset, whereas traditional classifiers assume that only known classes appear in the test environment. Existing open-set classifiers rely on deep networks trained in a supervised manner on known classes in the training set; this causes specialization of learned representations to known classes and makes it hard to distinguish unknowns from knowns. In contrast, we train networks for joint classification and reconstruction of input data. This enhances the learned representation so as to preserve information useful for separating unknowns from knowns, as well as to discriminate classes of knowns. Our novel Classification-Reconstruction learning for Open-Set Recognition (CROSR) utilizes latent representations for reconstruction and enables robust unknown detection without harming the known-class classification accuracy. Extensive experiments reveal that the proposed method outperforms existing deep open-set classifiers in multiple standard datasets and is robust to diverse outliers. The code is available in

PDF Abstract CVPR 2019 PDF CVPR 2019 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here