Classification Tree Pruning Under Covariate Shift

7 May 2023  ·  Nicholas Galbraith, Samory Kpotufe ·

We consider the problem of \emph{pruning} a classification tree, that is, selecting a suitable subtree that balances bias and variance, in common situations with inhomogeneous training data. Namely, assuming access to mostly data from a distribution $P_{X, Y}$, but little data from a desired distribution $Q_{X, Y}$ with different $X$-marginals, we present the first efficient procedure for optimal pruning in such situations, when cross-validation and other penalized variants are grossly inadequate. Optimality is derived with respect to a notion of \emph{average discrepancy} $P_{X} \to Q_{X}$ (averaged over $X$ space) which significantly relaxes a recent notion -- termed \emph{transfer-exponent} -- shown to tightly capture the limits of classification under such a distribution shift. Our relaxed notion can be viewed as a measure of \emph{relative dimension} between distributions, as it relates to existing notions of information such as the Minkowski and Renyi dimensions.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods