Closing the Accuracy Gap in an Event-Based Visual Recognition Task

6 May 2019  ·  Bodo Rückauer, Nicolas Känzig, Shih-Chii Liu, Tobi Delbruck, Yulia Sandamirskaya ·

Mobile and embedded applications require neural networks-based pattern recognition systems to perform well under a tight computational budget. In contrast to commonly used synchronous, frame-based vision systems and CNNs, asynchronous, spiking neural networks driven by event-based visual input respond with low latency to sparse, salient features in the input, leading to high efficiency at run-time. The discrete nature of the event-based data streams makes direct training of asynchronous neural networks challenging. This paper studies asynchronous spiking neural networks, obtained by conversion from a conventional CNN trained on frame-based data. As an example, we consider a CNN trained to steer a robot to follow a moving target. We identify possible pitfalls of the conversion and demonstrate how the proposed solutions bring the classification accuracy of the asynchronous network to only 3\% below the performance of the original synchronous CNN, while requiring 12x fewer computations. While being applied to a simple task, this work is an important step towards low-power, fast, and embedded neural networks-based vision solutions for robotic applications.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here