Cluster Synchronization of Coupled Systems with Nonidentical Linear Dynamics

26 Feb 2015  ·  Zhongchang Liu, Wing Shing Wong, Hui Cheng ·

This paper considers the cluster synchronization problem of generic linear dynamical systems whose system models are distinct in different clusters. These nonidentical linear models render control design and coupling conditions highly correlated if static couplings are used for all individual systems. In this paper, a dynamic coupling structure, which incorporates a global weighting factor and a vanishing auxiliary control variable, is proposed for each agent and is shown to be a feasible solution. Lower bounds on the global and local weighting factors are derived under the condition that every interaction subgraph associated with each cluster admits a directed spanning tree. The spanning tree requirement is further shown to be a necessary condition when the clusters connect acyclically with each other. Simulations for two applications, cluster heading alignment of nonidentical ships and cluster phase synchronization of nonidentical harmonic oscillators, illustrate essential parts of the derived theoretical results.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here