Cluster Trees on Manifolds

In this paper we investigate the problem of estimating the cluster tree for a density $f$ supported on or near a smooth $d$-dimensional manifold $M$ isometrically embedded in $\mathbb{R}^D$. We analyze a modified version of a $k$-nearest neighbor based algorithm recently proposed by Chaudhuri and Dasgupta. The main results of this paper show that under mild assumptions on $f$ and $M$, we obtain rates of convergence that depend on $d$ only but not on the ambient dimension $D$. We also show that similar (albeit non-algorithmic) results can be obtained for kernel density estimators. We sketch a construction of a sample complexity lower bound instance for a natural class of manifold oblivious clustering algorithms. We further briefly consider the known manifold case and show that in this case a spatially adaptive algorithm achieves better rates.

PDF Abstract NeurIPS 2013 PDF NeurIPS 2013 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here