CNNs, LSTMs, and Attention Networks for Pathology Detection in Medical Data

2 Dec 2019Nora Vogt

For the weakly supervised task of electrocardiogram (ECG) rhythm classification, convolutional neural networks (CNNs) and long short-term memory (LSTM) networks are two increasingly popular classification models. This work investigates whether a combination of both architectures to so-called convolutional long short-term memory (ConvLSTM) networks can improve classification performances by explicitly capturing morphological as well as temporal features of raw ECG records... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet