Coded Backscattering Communication with LTE Pilots as Ambient Signal

20 Feb 2024  ·  Jingyi Liao, Kalle Ruttik, Riku Jantti, Phan-Huy Dinh-Thuy ·

The 3GPP has recently conducted a study on the Ambient Internet of Things (AIoT), with a particular emphasis on examining backscatter communications as one of the primary techniques under consideration. Previous investigations into Ambient Backscatter Communications (AmBC) within the long term evolution (LTE) downlink have shown that it is feasible to utilize the user equipment channel estimator as a receiver for demodulating frequency shift keyed (FSK) messages transmitted by the backscatter devices. In practical deployment scenarios, the backscattered link often experiences a low signal-to-noise ratio, leading to subpar bit error rate (BER) performance in the case of uncoded transmissions. In this paper, we propose the adoption of the same convolutional coding methodology for backscatter links that is already employed for LTE downlink control signals. This approach facilitates the reuse of identical demodulation functions at the modem for both control signals and backscattered AIoT messages. To assess the performance of the proposed scheme, we conducted experiments utilizing real LTE downlink signals generated by a mobile operator within an office environment. When compared to uncoded FSK, convolutional channel coding delivers a notable gain of approximately 6 dB at a BER of $10^{-3}$. Consequently, the AmBC system demonstrates a high level of reliability, achieving a BER of $10^{-3}$ at a Signal-to-Noise Ratio (SNR) of 5 dB.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here