Collision-based Testers are Optimal for Uniformity and Closeness

11 Nov 2016  ·  Ilias Diakonikolas, Themis Gouleakis, John Peebles, Eric Price ·

We study the fundamental problems of (i) uniformity testing of a discrete distribution, and (ii) closeness testing between two discrete distributions with bounded $\ell_2$-norm. These problems have been extensively studied in distribution testing and sample-optimal estimators are known for them~\cite{Paninski:08, CDVV14, VV14, DKN:15}. In this work, we show that the original collision-based testers proposed for these problems ~\cite{GRdist:00, BFR+:00} are sample-optimal, up to constant factors. Previous analyses showed sample complexity upper bounds for these testers that are optimal as a function of the domain size $n$, but suboptimal by polynomial factors in the error parameter $\epsilon$. Our main contribution is a new tight analysis establishing that these collision-based testers are information-theoretically optimal, up to constant factors, both in the dependence on $n$ and in the dependence on $\epsilon$.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here